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ABSTRACT
\%he solutions of Schroedinger equations
| (1.1) ezdzw/dz + q2w =0, ¢q =7q(z), e » 0

“have well-known WKB-approximations, but the coefficients in these differ
on the two sides of a turning point. A new method for connecting them
across such points is developed to extend present theory to a more

} general class of turning points, which includes logarithmic branch

points of q(z), among many others. To this end, a delicate contrac-

tion for an integral equation differing from those of Langer and Olver
is used to show that Bessel functions can still approximate the solu-/“

tions at a certain, small distance from the irregular point of (l 1),

even though not uniformly near it. A novel feature of the analysis is

that the extreme variation of the exponential kernel is here controlled
even on non-progressive paths. Connection is completed radially by
means of the same integral equation.
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SIGNIFICANCE AND EXPLANATION

This work concerns the modulation of waves or oscillating
systems, which pervade all the science and engineering disciolines.
Modulation occurs when waves travel through an inhomogeneous
material in which the local pronagation velocitv differs from nlace
to nlace, but the differences are small over a distance of only a
wavelength -- a very common case in the sciences and engineering.
The resulting change to the waves is mostly gradual, but occasion-
ally drastic, as at a shadow-boundary, where oscillation turns into
decayv and quiescence over just a few wavelengths. When this ovhe-
nomenon can be analyzed via an ordinary differential equation, such
a boundary is called a turning point.

At first, only the simplest turning voints representing the
most typical shadow boundaries were studied. But then some vhe-
nomena, such as wave reflection and scattering cross-sections, came
to be traced to hidden turning points that become visible only when
real distance (or time) is embedded in its comvlex plane. When the
material properties vary in a general manner, (which can often be
observed only incompletely) the hidden turning voints can have
arbitrarily complex structure. The following work extends the

basic mathematical formula for connecting waves with shadow across

LI

a turning-point boundary to a much larger class of variations in O
the material properties than had been accessible up to now.
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CQONNECTION OF CLOSE QUARTERS TO GENERALIZED TURNING POINTS

J. F. Painter+ and R. E. Meyer

1. Introduction.

The best~known and npst important aporoximate solution to the

equation

(1.1) ezdzw/dz2 + qz(z)w(z) =0, e~ 0.

is the WKBJ solution, sometimes also called the Liouville-(reen

solution,
r4
(1-2) w(z) ~ Aq” Y2 z)esp[1e 7! [ a(z") dz]

z
+ Bq-l/z(z)exp [-ie-lf q(z'ydz'] .

This solution has only limited value around a singularity of q'/q.
It is valid in a closed region R which has no singularities or
zeroes of q and which satisfies a certain convexity property.
Because of this convexity pronerty, such a region R can contain

only one ''side" of a singularity or zero of q. Inpractice, oneneeds
to .mow w(z) on both sides at once, and that requires a much more

careful study of w(z) than needed to obtain (1.2).

fLawrence Livermore Laboratory. Livermore, California, 94550

' Sponsored by the United States Army under Contract Nos. DAAG29-75-
C-0024 and DAAG29-80-C-0041. The work was supported partially by
the National Science Foundation under Grant No. MCS77-00097 and
wunder its Traineeship Program, and by Fellowships of the University
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This convexity property is defined in terms of the natural inde-

pendent variable £, which appears in (1.2):

2

(1. 3) g = [ a(z')dz' .
0

Consider R = RE’ the region of wvalidity of (1.2), as a set in the

g-plane. If two points of R, have the same imaginary part, then

g
the horizontal line joining them rust itself lie in R.. As R

3 £
does not contain any singularity or zero of q, this means that it
cannot have any ¢ both to the right and to the left of a singu-
larity or zero of q (Figure 1.1). The need for this convexity
property arises in the proof of (1.2) from a need to have the expo-
nentials monotone on curves connecting points of Rg’ so that they '
can be bounded in terms of their magnitude at endpoints.

The limitation on where (1.2) can be applied leads to the connec-
tion problem: given the values of the coefficients A,B for which
(1.2) applies on the left side of z = 0, a singularity or zero of
q, find their values on the right side.

The most satisfactory way to solve this problem would be to get
a closer approximation to w(z) than (1.2) - one that is good at
both sides of z =0 simultaneously. Langer (1931, 1932, 1935),
Riekstins (1958), and Olver (1977) have done exactly that for the
simplest case, where q(z) 1is aporoximately a real nower of 2z near

z = 0. Then the approximation (1.2) by exponentials may be replaced

by an approximation by Hankel functions. The exnonential approximation

o AT e AN
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(1.2) holds in a set bounded away from z = 0, while the Hankel
function annroximation holds arbitrarily near z = 0 as well.

When q(z) 1is not a power of 2z, the connection problem grows
more complicated. Painter (1979) has shown for a logarithmic q(z)
and imaginary ¢ that the Hankel finctions will not serve any better
than the exponentials of (1.2). The central comnection methods which
work when q(z) is a power of 2z are not adequate in greater gener-
ality because the local anproximands are much less tractable.

The problem is that the singularity of q(z) at z =0 may, in
the general case, be vicious enough to upset computations made near
z= 0. The most natural way to deal with this problem is to run
away from it, to solve the connection problem as a ''lateral' connec-
tion problem, solving the equation at |z| = =.

This sort of method, however, is doomed from the start. Distance
from the singularity makes it hard to use information about it, but it
turns out that the answer to the connection problem is strongly
dependent upon the nature of the singularityat z= 0.

The route to the solution of this dilemma lies in the middle of the
road, batween the central and lateral approaches. Equation (1.1)
will be solved, approximately, at a carefully controlled distance from
2= 0. Some of the advantages of both the central and the lateral
connection approaches will show up well enough to give an answer
to the connection problem.

The method used will be to derive, from the diti_runtial equation

(1.1), an integral equation for the coefficients A(g), B(£) for

-b-
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which the approxdmate solution (1.2) is exact at z. Thatis,
(1.3) wiz) = A8 Y2 (z)exp (32 /) + Be)a Y 2 (z) exp (-t /¢) -

The intagral equation will then be written into forms for which it car

be partially solved by the contraction mapping theorem, i.e., by

iterations. Some of these versions of the integral equation give A(¢)
or B(¢) 1in various regions; others show that A(g) - AY(g) ‘ is small
in certain areas, where AY is the result of substituting z" for
q(z) and can be expressed in terms of Hankel functions. Proving
that the iterations which solve the equations work, involves many
estimates, which depend especially upon careful choices of the curves
along which various integrals are computed.

We will be studying the connection problem for a class of singu-
larity at z = 0 defined in terms of a mpdulation function
v(&) = %—q'(z)/qz(z) by (&) ~ Y/£ near zero, where Y 1is any
real constant <%. In terms of q, this includes the case which
Langer and others have studied, where q(z) ~ z’ as z > 0. Mre
important, it generalizes that case to include logarithmic ''turming
points' such as q(z) ~ z\)(log z)"(v > -1) and many others. It will
be proven that the same cormection formula which holds for q(z) ~ z"
also holds for this general case; that is, when the region of interest
comects regions to left and right above the tuming ooint (Fig. 1.1b).
the coefficients Ar’ Br in (1.2) to the right of zero depend uron

those on the left as follows:




(1.4) Arz .1\£ - ZBiiSiR(Y‘.T) + o(l)

+ o(})

A caal formula, in which A and B exchange roles, annlies
when the connection is made below the turning point (Olver 1974).
Many other formulations of the WKB connection problem arise in prac-
tice, but all are reducible straightforwardly to (1.4) or its dual.

Section 2 is dewted to the formulation of the integral equation
which was found capable of solving the connection problem with more
generality than before. In some ways, it is intermediate between the
simple WKB integral equation with exmonential kernel (Olver 1974) and
Langer's, with Bessel kernel. The proverties of the new kernel,
which is related to the incomplete Gamma function, are discussed in
Section 4. The main Section 3 outlines the method of connection
along a semi-circle of radius 6(c) tending to zero almost as fast
as t; Section 5 supplies details of the nroofs. In practice, con-
nection between noints left and right, but so close to the turning
point, is inadequate and Section 6 therefore extends the results to
arbitrarily large distances.

While our proof of (1.4) is valid also for y = 0, the formula
is not very informative in that case. The reason is that no informa-
tion has then been specified about ¢(£). Modulation functions
behaving like (£ log &) -1 near zero have been treated by Painter
(1979) along lines paralleling those here renorted, but inwolving

much added labor because the kemel is more comnlicated. More




definite results than (1.4) were deduced (Painter 1979) for that class,
which includes, e.g., q(z) which are, or annroximate, a nower of log

z near z = 0.




2. Integral Equations for Connection.

The main integral equations needed to solve the comnection prob-

lem come from the original differential equation, (1.1), which we
take to be valid for z in an open set Rz of complex numbers. We
assure q(z) to be holomorphic and nonzero in Rz; if q have a
singularity or zero, it will lie on the boundarv of RZ. We take =
to be positive.

The WKB solution suggests that we look at (1.1) in a different

form. This anproxdmate solution is

-1/2 -1/2,

(2.1) w(z) ~ Aq '“(2)exp(it/e] + Bq ' “(z)exp[-it/€]

2.2) W@ ~ (ia/e)q 2exnie/e] - (iB/e)qt Zexn[-ie/e]

where A and B are constants and

Z
(2.3) ¢ =t(z)= [ a(z)dz' .

Zo

With no loss of generality, we may talie the fixed point z, = 0.

The approximation (2.1), (2.2) is valid in closed bounded sub-
sets S, of R, with sufficiently smooth boundaries, which satisfy
a ""horizontal convexity' vroperty. If we set S, = é;(SZ) then S

g
is horizontally convex iff for any two points of SE with equal

2

imaginary parts, the line joining them also lies in SE' Because
the variable £ shows up in a nmore fundamental way than does 2z

here, £ 1is a more natural indemendent variable.

-8-
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This horizontal convexity requirement, moreover, is the source
of the connection problem. Suppose that q(z) has a possible singu-
larity or zero at one point of the boundary of Rz, say at z = 0.
(Here and henceforth we assume that q(z) 1is holomorphic and nonzero
at the other boundary points of RZ). We must assume q(z) to be
integrable at z =0 so £ can be defined bv (2.3). We mav use
(2.1) to compute w 1in a large neighborhood of a point to the left
of zero, g € 0, and in a neighborhood of a point to the right of
zero, ir > 0; mnevertheless if we were to know the coefficients
AQ,BQ for which (2.1) holds near EQ, equation (2.1) would not help
us find the correspondin- coefficients Ar’Br for e This is

because (2.1) cannot be applied in a set which contains both and

ir at once.
For the comnection problem we seek to know Ar and Br in terms
of A, and BQ. We will find Ar and Br by considering (2.1),

(2.2) as equations exactly true throughout Rz’ that is,

@ %(2) = AE)exp(it/e) + B(E)exn(-it/c)
Q.4 ' (@/1"% = A@exp(it/e) - B(Dexm(-it/c)
for ce RE = i(RZ)

Thus, A2 = A(EQ), BZ = B(EQ), Ar = A(Er), and Br = B(Er).
Substitution of (2.4) into (1.1) vyields equations for the modula-

tion coefficients A(£) and B(%),




|

(2.5) dh/de = o(£)B(g)eFE

(2.6) @B/dt = ot )AL )efS

where ¢ is the "medulation function"

~

1

(2.7) Q= q_ZGQ/dZ = -é' q—ldq/og

N~

and p = 2i/¢.

In order to solwve (2.5) and (2.6), we shall associate them
with integral equations. First, though, we must ensure that the
integral equations will exist: we assume that R_. is comnected

€
and simply commected, and that it contains the set

{¢ :|Ret | §,-Ime <6 }\ {g:Ret =0, 05 Img > -}

with 6,> 0O (Figure 2.1). For example, if q(z) be singular only

t z=0, R
a g

and a branch cut from zero to infinity. We also assume that o(£)

could consist of all complex numbers, less z=0

grows no more than exponentially as § —~=-1= for - Gos Ref = &,
(Re¢ # 0). Thatis, we assume that o¢(£)= & (exp (cl€ |)) with

x a constant (not depending on  €).

At this point, a choice has been made in regard to the cut
(Fig. 2.1), and its implication should be explained. First of all,
the original formulation of the Schroedinger equation (1.1) is some-

what arbitrary. It is the most general, linear ordinary differential

-10-
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equation of second order in normal form, but there is a whole family
of '"Liouville" - transformations z - z'(z) leaving the normal form
of (1.1) invariant, but of course, changing the coefficient q(z)
into a different coefficient Q(z') and changing the appearance of
a connection problem. This explains why connection problems can come
in so many guises and why it is difficult to tell at the outset
whether two people are talking about (Liouville transforms of) the
same commection problem or about genuinely different ones.

By contrast to 2z, £(z) 1is the distinguished variable charac-
terizing the oscillatory nature of the solutions. Where an approxi-
mation (2.1), (2.2) holds, [A| and |B| represent amplitudes and

-1/2) and -€ arg(Bq_l/Z), phases; £/2me) measures

-e arg(Aq
distance or time in local wavelengths or periods. Any canonical
formulation of the commection problem must therefore by in terms of
£. The real axis of ¢ 1is the line on which (2.1), (2.2) are purely
oscillatory, without exponential growth or decay, and this makes
connection between £y < 0 and £ > 0 the most common form of the
problem. It leaves a pair of problems, however, one with the cut in
the lower half-plane and the other, with the cut in the upper one.
These are analogous, dual problems, differing just by an exchange

in the roles of A(f) and B(f). For definiteness, that with the

cut in the lower half-plane is selected for study here.

The integral equations

13
(2.8) B()-B, = f o(s)A(s)efSds
Ly

-12-
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3 -
(2.9) AE) - R, = [ o(s)B(s)e PS 4s

)
are immediately associated with (2.6) and (2.5). For the present
choice of cut, however, a single integral equation inwolving A
ajone, rather than A and B as in {2.9), is more helpful. Towards

that end, integrate (2.9) by parts:

] _ s=§ S —ot .
(2.10) A®)-A, = B(s)j;<p(t)e ptdtls L j:ig-gﬂds j;qp(t)e Ptat
=51 52

To clarify the structure of (2.10), let

i

(2.1) JE)e = f. oMoyt
€

For sufficiently small €, the exponential factor decreases much
faster than ¢ increases as t-—-i», so that this integral (2.11)

converges. The kernel in (2.10) is then

- £ _ - -
@-12) 3,5 [TeTPomidt = 3(s)e7PS - yg)ePE
S

and by (2.6), (2.10) becomes

(2.13)  AE)-A, =Bl1(§.§z)exp(-p€z)+j: p(S)A(s)(E , 5)ds
£

-13-

-




F

This will be our basic integral equation. We shall solve it for
A(-’r), returmning to the much simpler problem of finding B(".r) onlv
at the end.

We will usually take the path of integration for (2.8) and (2.13)
to be an arc of the circle |s| = £. The radius & = *(2) will be
chosen as a compromise between two conflicting needs. First, if gq
has a singularity or zero at & = 0, that will determine the connec-
tion coefficients, so we must do computations near zero in order to
get an answer. On the other hand, if q has a singularity or zero
at £=0, then v my be behaved badly enough to make computa-
tions excessively difficult if they be done too near ¢ = 0. Such

conflicts will lie at the heart of much of the analysis.

The basic conditions on &(g) are that:

(2.14) (a) 8(e)> 0 (b) &(e)=0 (c) &(e)/e == as €=0

Condition (2.14b) is strengthened in Section 3, equation 3.21.

Wetake £, and §  tolleon the circle || =6; 1i.e.,
(2.15) £y = -6 £ =286
The coefficients A(§),B(E) at § =§, and § =§. are normally

approxinately equal to the coefficients at greater distances from zero,

suchas ¢ = -1 and ¢ =1. That will be discussed in Section 6.

-1l4-
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3. Close Comnection.

3.1. In order to approximate the WKB coefficients on the right,
A and B., in terms of given values of the coefficients on the
left, AQ apd BQ, we must know something about the singularity
between the right and left, at & = 0. Since we are interested in
q(z) which have logarithmic behavior at z = 0, we choose an

assumption which will cover such q. We assume that:
4) Eo(E) » v as || » 0

wmiformly in arg £ for which ¢ 1is defined; i.e., £ ¢ Rg' Here
Y 1is an arbitrary constant, with -« < y < %

In Section 5.1, it will be shown that (A) holds with
Y =%—v(\) + l)-l when q(z) = z°(log z)¥, with v and u real
and v > -1. (A) also covers the "fractional' turning point class
studied by Langer, Riekstins and Olver (1977).

To use the basic integral equation (2.13), we must begin by
estimating the kemel j(&,s), which is complicated by the lack of
information on the rate of approach to the limit (A); the full report
is postponed to Section 4. The method is to substitute (A) into
(2.11) and (2.12). Once the resulting error terms are successfully
dealth with, j(£)e ®® will be approximated by an incomplete gamma

function:

-]
[ Pyt
£

e
\
o
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This can be further approximated by a well-known fcrmula, except
near ¢ = gz . At £ = P another method can be used. The most
important difficulty in dealing with the error terms involved lies in
the fact that exp(-pt) in (2.11) is large when the imagainary part
of t does not quickly approach zero; while if t does quickly
approach zero, then not only will ¢(t) in (2.11) grow large, but

so will the error term  o(t) -~ (Y/t) = o(t"l). This sort of problem is
handled primarily by care in choosing the different paths of integration
on whicn (2.11), (2.12) and their error terms are computed. The
results are summarized below. These asymptotic formulae hold
uniformiyas € -0, for § and s lying on arcs of the circle
6| = |s| =8(e); thatis, |pt| = |ps|=26/e. These arcs are
pictured in Figure 3.1.

(3.1) JE)= (Y +0(1))/(pg) for 0= argé £ w -6, (Figure 3.1 (2))

where 60 > 0 is an arbitrary constant.

(3.2) i€, s)e™P S = (v +o(e™PS/(ps) - e FE /(pt)])
for 0s arg¢ < v - 6, and Osargssr- eo (Figure 3.1 (a)) -

-pE
(3.3) JE,g0e = (v+ o(1))[exp(~Pg )/(FE ) - exp(- £§)/(pE) -21]
for 0<% argt € = - eo (Figure 3.1 (a))

Ps

(3.4) sg, 5)° = oe P (pe))
I

for > $arg§ € args s v (Figures 3.1 (b) and (c)) .

-16-




FIGURE 3.1 : Arcs of validity of equations (3.1)=(3e5)

(a) 0 % arsﬁ)f X -6,

(b) 3 € argf)s 7
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FIGURZ 3.1 : Arcs of validity of equavions (3.1)-(3.4)
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3.2. We need a bound on A(:) before we can compute
it. First, note that the derivation of (2.13) can be repeated with

gr in place of gz to give

(3.5) Ag) - Ar = Brl'(%. Er) exp (- Pér) + fg o(s)A(s)j(g, s)ds
F’r
There is exponential behavior in A; we extract most of it

by multiplying A(£) by an exponentially small factor:
(3.6) a(g) = Ag)es .
Then equations (2.13) and (3.5) become:

(3.7)  a(g) - azexp(pg - PEy)= By I(E, & ) exp(PE - ¢t 4)

3
+ fg a(s)i(g, s)exp(pt - ps)e(s)ds
d

T e

where 'd"' can be either "¢" or 'r". To have the
exnonential in the integral in (3.7) bounded, we require ¢ to
le in tie same quadrant as §q (Figure 3.2). Thatis, if gd =g,
then %s argf{ € w7, sothat = £ arg(ct) < arg(Ps) s arg(pgl:) =3n/2.
If g4=§., then Osargis -;— so that arg(pg ) = m/2 s arg(Ps)
£arg(pf) & w . _

With such ¢, if s les between ¢ and &g 2sinthe

integral of (3.7), then ps will have greater real part than £t ,

-19- i




3

so that exp(pt - ps) will be bounded. Moreover, we may use (3.2)

or (3.4) to find that, for s 1in the integral in (3.7) crfor s = gd,

(3.8)  i(t, s)exp(pt - ps) = &(ct) = 6(e/8) = 0

Substituce (3.8) and assumption (@A) into (3.7).

(3:9) 26) = Ag® + By0(e/5) + llallfe(%jj &,
d

where ||a||i is the sw norm, applied for ¢ or s on the quarter-
circle allowed (Figure 3.2); that is, |la||’= swp{|a(s) | :J < arg(s)
<mls| =8} and |la]|i= sup{la(s)| : O < arg(s) < 7/2,|s| = s}.

Let
(3.10) C=max(|AQ|,|Ar],]B£[,|Br|) .

We shall see, of course, that C 1is usually bounded as ¢ - 0,
but that is not yet known. The integral in (3.9) is bounded by /2,

and the exponential decreases (or is constant) in magnitude as ¢ - O,

so that (3.9) becomes

ag) = 6(C) + o5)lal |2

Therefore,

.‘/-.r————-v—-——-w ——zn - T e e

i




PIGURE 3.2 : Locations of

(b)
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.d
Ilali_ = &(C)

and, hence,

(3.1 Ilall_= sup ({ag)] :!t] = 6,05 argg = =) = ¢(C)

We may use (3.6) to translate this back into the coriginal A(¢)

notation.
(3.12) AE) = Cole ) = C e
for £ on the entire semicircle [¢]| =6, 0<argt 2=

(Figure 3.2 (c)).
The argument that produced this bound can be carried out more
precisely to give a formula for A(Z) wvalid on the arc

%—n <argg< TT-GO (Figure 3.1(d)). That is done in Section 5.3.

3.3 Now we can compute A(f) by showing it to be close to a
known function A'(:). We have described A(£) by following three

equations:

3
(2.13) Ag)=A, +B, 1,5, )exp (=P ) + [ A(s)E, s)e(s)ds

5
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£
(2.12) j(&, s)exp (-ps) = [ exp(~ft)e(tict
S

(A) p(t) = (Y + o))/t
We define AY(g) by replacing ¢l(t) by exactly Y/t; thatis,

(3.13) AY@E)=A, +B, i (6,6 )exp (~FE ) fA"(s)jY(g,sws"lds
2 X L gz

3 -1
(3.14) (e, syexp (-ps) = [ exp(-gt) ¥t dt
S

If q(z)= zv, then plt)= Y/t with Y= %v(l + v)-l; thus
AY(g) {s the modulation ccefficient for the special case of
q(z) = z¥ . Forsuch q, the solution w(z) to (2.1) canbe
written explicitly in terms of Hankel functions (Section 5.2), so
we know AY exactly.

In Section 4.8, we show that j and jY are approximately
equal in the following sense. The error bounds are defined in

terms of
(3.15) h(€) = max(g(8), exp(~26/¢€))

where g(58) {s the maximum error in assumpticn (A), thatis,

(3-16) g(6) = sup (i () - Yi:!E] < a,gep\g}

. ca _— — e —— — - - e -_—
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Note that qg(6) = 0 as &§-=0, soalso h(g)-0 as £-=0.

All of the following 3 equations hold for ¢ and s satisfying

el =1s| =5, andwith €=0.

(3.17) JE,s)= (1+ eh(e)) &, s)

for Osarggsf.--eo,OSargssﬂ-eo (Figure 3.1 (a))
(3.18) e, 6, = L+ 8mNI'(E.E,)

for 0< argf €T - 6o (Figure 3.1 (a))

1

(3.19)  J{£,s)=3V(E,s) + 6(h) € & "exp(ps - pE)

for %n’ < argf sargs<s w (Figure 3.1 (c)).

Since we want to use this to show that A{f) - Ay(g) is small,
we next combine (2.13) and (3.13) into an equation for

ag)-a%e) . |
(3.20) Ag)-AY(E) =B, (16,6, - 1VE.E )] exn(=pE ) +

¢ 3
+j'g AY(s)[i(t , sYe(s) - 3 Y&, sy ys~ds +
£

+ fg [A(s) - AY(S)]HF,, s)p(s)ds
Y
This equation will be solved approximately in the next two subsections.

They will depend upon a restriction on the choice of the arbitrary
function &(€). So far we have required that £<€ §(e) € 1. Now

we alsc require 6(€) to satisty

-2
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(3.21) 86-IQ(5)eXp (26/e)~0 as € =0

Consequently, h(e) also satisfies (3.21). Whatever the functicn
g(6) may be, this condition (3.21) can be satisfied by some choice

of ©&(g). For example, we could define a function £(8) by
(3.22) £(5) = 25| log(g(s))|

This decreases monotonically to zero as & - 0 because g(3) does;
thus €(§) can be inverted to give &8(c) satisfying both
e8¢ and (3.21).

In the case of greatest interest, where q(z)= z"(log z), we
have g{6)= 6(log 6)_1, by (5.7), so that the requirements for
6(€) can be satisfied with

-1

§¢ =%_-logllog 5|

This increases only slowly; i.e., equation (3.21) has forced us to

put 6(¢) rather near €.

3.4, Inthis section we shall solve (3.20) for % in the ar:
& ] =8, 1 < argt €« (Figure 3.3). To bound the first bracketed

term In (3.20), we use equation (3.19) with s=¢
Z

(3:23)  [J(&,8,) 176, & lexp(-pg,) = &) « 6" exp (-¢5) -

-25-
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The integrand in the second term of (3.20) contains A", which is
bounded by (3.12). For the case q(z) = z° which leads to A',
it is already known, as will be discussed in section 5.2, that
equation (2.2) (with A and B constants) holds as close to
zero as |£| = 6§, and that the connection formula (1.4) holds;
therefore, C defined by (3.10) satisfies C= 6(1) as €= 0,

and (3.12) reduces to
(3.24) AY(E) = & (exp(- £t )

Substitute (A), (3.24), (3.19), and (3.2) into the second term cf
(3.20).

3 _
L7 AV, s)o(s) - 17, )Y s ds =

3 -
=fg 6 (exp(- ps)[6/3(6 NI(E, S) + §(E,5) - § (¢, 9] ¥s ™ ds

3

4

[6(q) e 6 e P8 + o(h) e 67 e PE]vs ds

)4

eh)e 51

The last term of (3.20) can be estimated by the same method as

in section 2, again using equation (3.8). Define

(3.26) b(g) = [Ag) - AY(g)] exp (ct)

-26-
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then (3.20), (3.23), and (3.25) may be combined to give
-1 £

(3.27) big)= 6(h) e & + fg b(s)exp (Pt - ps)i(E,s)e(s)ds
Z

Now substitute (3.8), and use the norm definition after (3.9) and

the fact that f;a(s)ds = 6(1) fs-lds = ¢§(1).
-1 -8 -1

(3.28) bg)=6(h)e &+ ||bl| 6(e87)

It follows that

(3.29) b(g) = 6(h) ¢ /&

By (3.26), this may be translated back into our original terminclogy.

For the ¢ allowed in this section (Figure 3.3),

AR) - AY(E) = 6(h) ¢ 5 texp(-pt )
(3.30)

= o(h) ¢ & exp(28/%)

Now equation (3.21) gives us the restlt, that Ay(g) is a first
approximation to A(¢). For ¢ in the upper-left quarter-circle
(Figure 3.3):

(3.31) Ag)=AYE) + o))

=27~
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3.5. In this section we shall solve (3.20) for § inthe arc
Igl =8 0=<argf % = (Figure 3.3). That will give us the sclution
to the connection problem. The first bracketed term in (3.20) may be

bounded by means of equations (3.18), (3.3), and (3.21).

[i(5. 8 ) - 576, &, exp (- pE ) = S(RNIE, & ) exP (=Pt )

s[el) + 6(pt) texp (- pt)]
(3.32)

o(h)[e(l) + 6(c8 Texp (25/¢))]

o(l)

For the second term of (3.20) we start by substituting assumption
(A) and equations (3.16) and (3.24)

¢ -
[7 AV, sios) = 1%, s)vs Has
(3.33) J

&
=fg 6(c PE)[6(a)ilE, s) + 3E, s)-1Y(e, s)] ys ™t ds
2

By (3.2) and (3.4), we can take care of the first term in brackets:

(3.39)  j&, s)e"PS= o(pe) e ™PE) + s((ps)tePS)

1

= §(e6 exp(25/¢€))

For the rest of the bracketed expression, we deal separately with s

in each of the two quadrants in Figure 3. 3.

R . A el ol vr - = s e e =




FIGURE 3.3

in sections lL and §

: Location of ¥ for wrich (3.7) is solved

i§

S P
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If s be inthe right quadrant, 0% args=< -lé- v, thenby (3.17)

and (3.2)

[ite, s) - (e, s)le” PS = echite, s)eFs= a(h)ps) Le~PS

(3.35) )

= 6(h) e & "exp(25/¢€)

On the other hand, if s be in the left quadrant, lzn- £ ss<n, then

we must first split up j(¢, s), before applying equations (3.18),
(3-3), and (3.19).

D, s) - Ve, slle™P = 36,8 exp(-pt ;) - i(5,8 lexp(-pt ;)]

- V(e & glexp(= £t ) = §(5,8 plexml=Ft ;)]

1

(3.36) @(h)i(é,éz)exp(-PE,z)- 6(h) e & "exp(-ps)

o(i[es Lexp(-pt) + 6 ()] - 6(h) ¢ 5 exp (- ps)

o(h)(e 5~ exp (25/¢) + o ()]

Now we can put together equations (3.34), (3.35) and (3.36), by

substituting them into (3.33). Then use (3.21).

¢ )
fg AYs)ItE, s)e(s) - § (&, s)¥s s
2

f 6(h) ¢ G-Iexp (ZS/E)S-ldS
&2
o(l)

1]
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Next break up the last integral in (3.17) into two parts, so that when

(3.32) and (3.36) are substituted, it becomes:
Y 16 Y
(3.37) [AE)- A" = o)) + [ [A(s) - AT(s)]jEE, s)els)ds

)4
€ Y, .
G[A(S) - A'(s)]iE, s)e(s)ds

t

The first integral in (3.37) can be handled with (3.2) and (3.30),

the result of the previous section.

16 y i8 - os
fg [A(s) - A (S)]i(é,5)¢(5)d5=-£ s(h(eNese” P31, s)e(s) cs
2 £

18
6 (h(€))(e/5) { (v + o) ((ps)te7PS - (o) e )s 7 as
(3.38) £

6 (h(€))(e/ 5)% exp(28/¢€)

o(e/3)

A

In the last integral in (3.37) we may estirmte j(£,s) by (3.2) and
the fact that exn(-pf) 1is smaller than exo(-ps) there, and we may

estimata o¢(s) by (A). The result is that (3.37) and (3.38) imply

(3.39)  [A@) - A(6)] = o) + o(e/8)] Als) - AV(s)l |

It follows that in the quadrant studied in this section, and hence in

-31-




the entire semicircle |g| =6, 0% argf & = (Figure 3.3),

(3.40) Ag) = AY(g) +0o(l) .

3.6. The approximation (3.40) for A(£) gives us the connec-

tion formula. It will be shown in Section 5 that

(3.41) A = A, - 2B, isin(¥m) + o(l) (for =-=< Y<L2)
Therefore, by (3.40)

(3.42) A=A, -2B,1sin(Yr)+o(l)

Of course, Ar and A y are the values of the modulation co-
efficient A(¢; at £ = §(g), -58(€), even though we may really be
interested in A(¢) for larger &, e.g., £ =1, -1. However, in
Chapter 6 it will be shown that, given a very slight strengthening cf
assumpiion (A), Ar = A(l) + o(1), Az= A(-1) + o(l), and
Bz = B(--1) + o(1); thus the same connection formula (3.42) will still
hold wi-h Ar= A(l) and Az = A(-1).

Equation (3.42) solves only half of the connection problem; the
other half is to show that Br = BE + o(l). Given (A"), the
strengthening of A in Chapter 6 Br = B(l) + o(1) and
B = B(-1) + o(l). Thus it suffices to show B(l) = B(~1) + o(l). This

follows from the well-known WKB formula (2.2) and the fact that

=32~

L




B(%) 1is the coefficient of the dominant term of (2.4), for positive
imaginary £.

More precisely, we apply (2.2) twice to & =1, once in a
region RL containing £ = -1 and once in a region Ry containing
£ =1 (Figure 3.4).

The resulting equations are

ql/zw; = AL + o 1e Y + B +o0@) 1"
z=z(1)
= [B(-1) + o(L)]el/€
g% = ) + oM 1e e + BA) + o) 1el/E
z=z(1)
= [BQ1) + 0(1)]e1/€
Therefore,
(3.43) B(1) = B(-1) + o(1)
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4. Properties and Error Bounds of the Kernel.

4.1 The computations in Chapter 3 depended upon equations
(3.2)-(3.4) and (3.15) for j(&,s). In this section we shall derive
those estimates, using assumption (A) of Section 3, but not the

restriction (3.18) on d§(<). The first step is to compute

i
(4.1) jg e~ FE =fg e™PS o(s)ds

Assumption (A) suggests that we approximate v¢(s) in (4.1) bv v/s,
but in order to keep the error term small we must keep the increasing
exponential factor exp(-:s) under control, and that requires care

in choosing the path of integration and computing error bounds.

For the computation of j(¢), the path of integration will be that
shown in Figure 4.1 . We have ¢ onthe circle between £, = -6
and ¢ =85, nottoocloseto £,; fi.e., {¢| =6 and
0<argy Sw-6,, with e°> 0. We build the path out of four
curves. The first is AL o2 vertical line drawn from ¢ = £q T 1§,
to E, the point with the same real part and a lower imaginary part,
fg‘i = mirn (%gi, £ - -lé- gR). This is chosen so that Im(s), and hence
lexp (=fs)], will be decreasing along A1 . The second curve is A:,_,
a horizontal line from Q to £, the point with the same imaginay

part and whichever nonegative real part makes g lie on the circle.

~35-
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That is, Ei = ’g\i, gﬂz 0 and |} = 6. This curve is chosen to avoid
s =0, where ¢(s) becomes large, without resorting tc an increase
in |exp(-Ps)|. Then most of the magnitude of the integral in (4.1)
will come from near ¢, where exp(-Ps) is biggest.

Finally, the third curve A is the arc from E’ to

3

£y, = Sexp(-wi/4) = 8N2/2 - i82/2 and the fourth curve A, s
the vertical ray straight down to -i=. These curves are chosen to
lead to a practically fixed point, with {exp(~ps)| monotonic. On
A3 and A4, | exp(- Ps)| decreases to zero exponentially faster
in s than |g¢(s)] can increase.

Now we shall approximate ¢(s) by Y/s and split the remain'ng
error term into four parts, one for each of the four curves Al’ AZ’
A, and A,. By 4.1)

f e ps(s o(s) - y)s"1 ds .

—jo
j(&)e-pg =Y f e Psglys s
£ 1A

(LI s ITS

i

Now change variables in the first integral and pull g(8) out of the
next three integrals

(4.2) ) FE = v ja e ulau
PE
> 1
+o(as) ¥ [ lePSsT as|
i=1 Aj_

+6(1) fA | exp (~ps)(e(s) = ¥/s)ds|
4
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This holds as ¢ - 0, wniformly for 7 on the upper semicircle,
o= s

The first term in (4.2) is the incomplete gamma fimction,
7(0,0%). We may approximate this by [Olver, 1974, page 110]:

(4.3) Tt = | e ¥ulau~ (pg) lexp-pg) as £~ 0
P

uniformly for ¢ on the upper semicircle, not tco close to gﬂ; i.e.,
lel =6 and 0s%argg s« - o,  (Figure 3.1 (a)).
Once we show the other four terms of (4.2) to be smaller, this

will give us a simple formula for j(¢) .

4.2. The first of the four error terms in (4.2) may be esti-
mated by writing it in texrms of real variables and integrating by

-

parts to isolate the contribution of the path segment near ¢,

where the integrand is biggest.

C ps - €.~ N
(+.4) J le Psslgsl = ) Pl exploip@g, - tlg - e Tat
A,

« exp(-1g, )1 o6 170~ 1eg - tpee, - €)1 Texpitete, - §)))

A

58 -
#1171 M eptietie, - vig - 1t 73
0

at]

The first term in the brackets is % €/6 . The exponential in the




N

A

second term is bounded because ip<0 and £, -£,> O. The deno-

minator of the second term is | p’;\' .

A 1., N
For 53“51' we have g:ga+zxgi, so that §, 2

%] Laad

c, .
=i

Moreover, for such ¢, /4% argf s = - eo , So that
(4.5) gi/(g] > sin eo> 0

1 .
Zésmeo.

On the other hand, if I then 0% argf £ n/4, so-

Thus, [£]21l¢] sine, =

(4.6) gg/|gl 2 cos(w/4)=1/N2Z

Therefor., |'g\| pS lgal 2 lel/d2> |t] (sin 8,)/2 = %5 sin@_.

In either case, the second term in the brackets in (4.4) is
(4.7) = [ef ] empipe, - €1 = 1ol HEI o)
= $)G8sine ) o) = e(e/5) -

For the third term in the brackets of (4.4), we

examine the quotient in the integrand, (g1 - t)lg - it| -3 . If

gﬁs €ys then
g -1t = [me -1ty 28, = 3¢

Therefore, and by (4.5),




1

(4.8) @, -0lg -1l e g, Ge) = 8e7%= (gl

= 6(67%) .

On the other hand, if §a= &y» then we may use (4.6).

(4.9) &, -vlg -1t e 5577 = o el 7= 067

Substituting these bounds and the definition of p= 2i/¢ into the

last term of (4.4) shows that

(4.10) lp!| ljji ! exp(ipt)(gi-t)lg - it| 3at

2. £ R
ses™h [ bexp(tptidt = 6(e/5)°[1 - exp(ip(g; - £,))]

o(c/8)
This completes an estimate of (4.4):
(1) [ |e7P %5 asl = expt-togle(e/6) ¢ o(e/6) + 6(/5)]
1
= ol(pt) ™ exp (=68 ))

and the first of the four error terms in (4.2) is

6(a(8))(p8) L exp (-PE )

(4.12) 6(a(5)) ) |exp(-ps)s™lds|
A

o(pt) ! exp(-£2) -
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This sumary error bound is good enough for our purposes because the
first term of (4.2) is, by (4.3), approximately Y(o&)-lexp(-ai).
It takes care of the biggest of the error terms in (4.2), because

the exponential factor in the integrant is biggest near .

4.3. The second of the four error terms in (4.2) can be inte-

grated explicitly as follows.

; a Bal -
[ lexp(-ps)sds| = exp(- mgi)lfgﬁiﬁ i,
A

dt|
2 R
ek
(4.13) = exp(- ipgi)llog(’t +lt+ig D, gﬂl

R

exp(-168, ) lloglie .+ [€1) ™ & + 1ED]

To get a bound for (4.13), we look first at the denominator in the

logarithm. For £, 0, § = go+13¢,, so that
B/18 = Le/lel 23 stn o
and
(4190 g+ 181 = 181 - le ) = (€1 + lg DTHUEIZ - 1g )Py

2 1181718, 1% = 1Sl sin o)/




TN e~

This bound also holds if ng 0, for then
(4.15) g+ 181 2 181> El(sin 0 )%/8

These two inequalities, together with (4.5) and (4.6), can give us

an upper bound for the quotient in (4.13):

(4.16) g+ 18N E+ 1ED = (El(sin 0)%/8) 2IE1)

- - TS ST
|€ l(sineo) 2166 % (38sin6,) Y(sin o,)7% 165

-3
32 sin eo .

We also need a lower bound for this quotient. First, if g.<¢&,,

then € =g + 131‘51' so that
1€l s lel = 6= [E] .
But =, +1E,, hence, Ep=t, Figure 4.1 (a)). Therefere,
(81) o+ BRI @+ 18D = gg+ 181 gt 18D = 1> (sin 69730 -
On tae other hand, if £52¢,, then

18] = lg, - Legl = maxe, 3t s 6 -

-41-
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Consequently,
N oy
gl =g+ €, <28 .
Therefore,
(4.20) (&g + 1) Eqt 1ED = 6+ 287 ] = /3> (sine)’/32 -

l Now that we have both an upper bound and a lower bound for this

quotient, we can estimate its logarithm.
(4.19)  |loglte, + 18NN, + 1210

= max (log [(g, + 817 €, + [EN, osle g+ 1EHE, + 1EDH™N

< log[32(sin 6,)"7]

From (4.13), therefore

3
8,) -

| (4.200 [ lexp(- ps)s~las| < exp(-ipgi)log(Sz sin”
A

A
But gi is bounded below gi. For, if ig;‘ gi, then by (<.5)

”~

1 1 1
gi-g1=-2-giz-z|§{ sin @, =5 §sine_ .

!'7' il I il e . 4 ——— - —
" p




If gﬁzgi then by (4.6),

—

g -8 =t 23 lel/NT = on2/4 -

Therefore, (4.20) gives us room to keeo the integral smaller

than an incomplete gamma function:

——

(4-2) [ |exp(-ps)s lds| = s(exp(-iff)))
AZ

6(exp (10(3 6 5in ©_))) exp(- 16t )

6 (exp(- 5/¢ )| exp(- £)| = o(et) Lexp(- pt) -

This shows that the second of the four error terms of (4.2) is smaller

than the first term of (4.2).

4.4, The third of the error terms in (4.2) if readily estimated

by repeating the computation of (4.21):

(4.22) [ Iexp(-PS)S'ldsi=|exp(-F€)l6'1f las|
A, A,

% exp(- 16616 (7 6/4) = v exn(- 1pE))

= o(pt ) Lexp(- pt ) -
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The last of the error terms in (4.2) is the reason for
our assumption that o(t) = ¢ (e 1§I) as ¢ = ~-i= (Chapter2) .
The other end of A4 {s §p = Sexp(-wi/4); there, o(f)=¢(1/5)

bv assumtion (A). Accordingly,

IA4I exp(- £s)(g(s) - ¥/s)ds] = @(1/6)fA lexp(c | s| - ps)ds]
4

6 (1/6) f6 exp((c + iP))At = 6(1/5)(-k + 2/5) lexp((k - 2/ ) )

6(e/8)exp(-28/€).

But the ¢ which we are considering here have positive ima-

ginary parts, so that p¢ has negative (or zero) real part, so

exp(-28/€) = o(exp(- p£)) exp(-26/€) = o(exp(- p§ ) .

Therefore,

(4.23) & | exp(- ps)e(s) - ¥/s)ds]

(pe)" L exp(~ pt )olexp(~ 26/ ))
4 N

otpe ) Lexp(- pt) -

Now substitute into equation (4.2) the equation for its dominant
term, (4.3), and the equations for its four error terms, (4.12),

4.21), (4.22), and (4.23). The result is:




—
) .
Cem o

hoirat I

. ol ol o

-im - _
(4.24) j(g)e"® - fg e PS(v/s5)ds + o(g(8)(ee) e PE

+ 6(exp(-26/€))(pt) e PE

o _

a+ G(h(emfg e PS(v/s)ds

= (Y + oM)ee) e FE .

This holds uniformly in £ onthearc [¢] =8, Osargt s~ -6,
(Figure 3.1 (a)).

Substituting this into (2.12) gives an equation for j(¢, s)

(4.25) i, s)e™PS = (1 + o(h(en Vg, s)e” S

= (Y + o) (ps) e PS5 - (pg)le PE)

This holds uniformly in £ and s onthearc |¢] = |s| = &,

with Osarg¢ s« -eo. O<args€w -eo (Figure 3.1 (a)).

4.5. We still lack an estimate for j(£,s) with £ or s near

£, where (4.3) fails because £, 1is a sector boundary of that

approximation. By (2.12),

[
(4-26) JEpr & ) oXP (=58 ) = j;’ e PSo(syas
y/
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and by (4),

(4.27) o(s) = (Y/s) + (g(s)/s) .

with g(s) >0 as |s]| -~ 0.

In the lower half s-plane, ps has positive real part, and the
exponential is small, but ¢ has a possible branch cut along the
negative imaginary axis (Figure 2.1). Write the upper semicircle
(Figure 4.2 (a)) as the sum of curves L' ad T (Figure 4.2 (b)).
Then

(4.28) JEpt ) exp (-t ,) = ¥ f1r e P s7las
+-]' e PS o(s)ds + f,e'pSE(s)s-lds .
r L
The integrand of the first integral in (4.28) has only a simple pole,

(4-29) Yj;"e-pss-lds= -2x1Y
We shall show that this is the dominant term of (4.28); the second
term has a decaying exmonential and the third term includes g(s),
which is small.

The second term of (4.28) would normally be shown small by
Jordan's lemma, but the standard forms of Jordan's lemma do not cover
this case. Break T into three parts, as shown in Figure 4.2 (e).

Because ¢ 1is holomorvhic, assumption (A) implies that on e
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(4. 30) do(s)/ds = 6(s"%) = 6(6”%)

Therefcre we can get a usef ul error bound by integrating by parts.

- -1 - £ -1 - s
[ e PSo(s)ds = -ple psq)(snga - o lemPS o(s) Igr
T, ) b
(4.31) +p1 J e PS o' (s)ds
5

- 6(E/S) .

For the second part,

Im(s) < - 8542
so that

(4.32) [ e PSo(s)ds = Sexp(-nZ(5/€)) J_ Votsxds = oe/5) -
2 2

For the third part, we use the assumption that ¢ grows at most

exponentially as s = ~io, and assumption (A) for s= 0.

(4.33) | [ e™PSy(s)ds| s 287! [exp((x ~ 2/e)t)at = 6(e/6)
r 5
3

Combining (4.31), (4.32), and (4.33) gives a boind for the second

i term of (4.28)

S
4 2 o ,,
“q'*"-‘m: B il gk ot Chaestdetiet i b LT — e e e s

— N eeists——t skt




f e PSo(s)ds = 6(g/56) .

(4.34)
r

In the third term of (4.28), the exponential factor in the integrand

can grow. We shrink the circle in L' froma radius * to a

radius ¢ (Figure 4.2 (b) and (d)); then on the resulting new curve

L, the exponential satisfies

(4.35) |exp(-ps)| s exp(-pie) = e .

Thus the third term of (4.28) is, where L1 is the circular part cf

L and LZ’ the straight part,

(4.36) f'e-psc';"(s)s-lds = f e-psa(s)s-lds
L L

= f e'psa(s)s_lds+ f e_psg(s)s_lds
L L,

-Ps ~ -1
slaten + [ e PSG(s)s s .
L,
In 1 the last integral of (4.36), é(s) is small where

2)
exp(-ps) 1is biggest. However, standard forms of Watson's Lemma do

not apply.
Let g (s) represent the value of g(s) on the right edge of

the negative imaginary axis and g (s) the value on the left. Then,

. -53- |
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Tortyat

i
(4:37) 1= [ exi=ps)a_is) - . isnsT s
With t=1s -+ and p(t) = g (s) - g+(s),
(4.38) L=e? [ exp-2t/2)t + €)
0

Now we break this integral into three parts.

First, consider

t>1. Then because o(s)= ¢(exp(&,si)) for s = -im,

also p(t) = g(expi{xt)). Therefore,

f exp(-2t /e)(t + E)“lp(t)cit s f expl((ck - 2/€)t)dt
1 1

(4.39)

= (2/€ - ;c)-lexp(;c ~-2/e)= g(e)exp (-2/<) -

Second, consider %6 st<1; in this interval,

Ip(t)| s 2g(it] + €)= 2g(1 + £) < 2q(2) ,

tre)teds +oeyleas?,

[¥Y Lo

8
(4.40)

= 6(e/6)exp(~258/¢c) -

—54-

1
fl exp(- 2t/e)(t + E)_lp(t)dt < @(6)'1 f
)y 6
2

1
exp(- 2t/e)dt

LN T ey




B

wyno

Lastly, consider 0sgt= -;—6 . Here,

Ip(t)] = 2g([t] + 2) 5 29(55 + €) = &9(D)

1 1
28

2
o

exp (- 2t/e)(t + E)-lp(t)dt s s(g(6))e ! [* exp(-2t/¢)dt
0 0
(4.41)
= 6(g9(3)) -

Finally conbine (4.39), (4.40), and (4.41) to bound 12:

(4.42) I, = 6(g(8)) + 6(e/8)exp(-26/€) = o(]) .

From (4.42), (4.36), (4.34), (4.29) and (4.28),
(4.43) j(gr-gz)eXP(‘ fp) = —2mwiy + 6(g(8)) + 6(/8)
= =-2wiY + o(1) .

4.6, Besides computing j(gr,gz), we must find out how

close itisto jYt,&,). By (4.28) and (3.14),
(4-44) (.5, - (L8, ) expi-pg ) = fre‘psa(s)s‘lds

+ f'e-psg(s)s-lds .
L
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By (4.35) and (4.42), the seccnd term is

i

(4.45) fL,e'pss(s)s‘lds 6(a(€) + 6(3(6)) + &(c/5)exp(-25/¢)

6(h(g)) .

For the first term of (4.44), we use equations (4.31), (4.32), and
(4.33) with E(s)s"1 in place of ¢(s). Because g is holomor-

phic, on 1"1,

(4.46) dg(s)/ds = 6(g(5))/s
S8 - gi5572)

Substitute this into (4.31) to find that

(4.47) f e'psa(s)s'lds = @(ea-lg(S)) .

Iy

If g i3 substituted for ¢ in (4.32) and (4.33), we get

(4.48) [ e™PSG(s)s7tds = o(e571g(s))
2
(4.49) [ e P%5(s)s7 as = s(es7laqon -
r
3

Therefor:,

-56-
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(4.50) (€08 ,) - 1ty exp (-8 ) = SB(EN + 6(=6 ™ a(6))
= o(h(e)) = &(h(€))i (€, & )exp (-FE ) -

4.7. Equation (4.43) leads to a more general equation. Add

J'(E,gr) and use (2.12) and (4.25),

(4.51) JE,6 )exp(-pE,) = (Y + o(l))[(pér)'lexp¥~ FEL)

- (pg)?

exp(-pt) ~ 2mi]
as €-0, uniformlyin ¢ onthearc [£| =6, 0= argg s 7 -9
(FTigure 3.1 (a)).

This has still not dealt with j(§,s) for & and s
both near £y Next we shall find a bound for j(&,t’,g)
for £ near gz ; Ll.e., = -eo sargf <= w . By assumption (A),
o(s)= & s'l) uniformly. Therefore, if we perform the integration

(2.12) on an arc of the circle |s| = 6 and set t=Im(s) (Figure 4.3),

¢
(4.52) J(€,8,)exp(~pty) s [ |exp(-ps)e(s)ds)
Y

o) [ |exp(-¢s)s~lds|
)
1

:
o) [ exp(-1pts” - t%) Pt
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. 2
Now, because w - eo < arg s< 7, Wwe canbounc (6~ -t7)

as followss:
O0st=1Im(s)= § sirarg s= 4 sin (v - arg s) £ 6 sin eo
(4.53) 6% > (8% - t2) » 52(1 - sin® o)
Substitute this into (4.52).
(4-54) j(€,5 )exp (- FE)) = @(6-1) f:i exp (- igt)dt
= 6(e/8)exp (- ift,) = &(pg)  exp (- £g )

But by (4.51) this bound alsc applies to any § on the arc

[¢] =6, 6,5 argt s - @ (Figure 4.4) . Consequently,

(4.55) J(E,E ) exp (- £t ;) = S(FE) exp(- £E) as €-0
uniformly for ¢ onthe a.c ] = 5, 6, s argt s« (Figure 4.4).
Now use this equation twice, to subtract j(s,{,)exn(-pf,)

from j(,,§,)exp(-FE,). By (2.12), for ¢ and s asin (4.55),

(4.56) J(&, s)exp (- p9) = O(cE) exp (- L) + 6(ps) texp (- £5) .

-59-
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Thess= are both increasing exponentials in (4.56). If we restrict
£ and s to the left half of the semicricle with
lz“' sargg sargss r (Figure 3.1 (c)), then the first term dominates,

so (4.55) reduces to

(4.57) (&, s)exp (- Ps) = 6(PE) ~exp (- pt) as e€-=0.

4.8. To complete the proof of the estimates (3.17), (3.18)
and (3.19), which were essential to Section 3, observe that (3.17)
is the same as (4.25). For equation (3.18), add (4.25) with s = -
to (4.50).

r

To get equation (3.19), we must modify the computations in

section 4.7. First, subtract (2.12) from itself as follows.

¢ .
(4.59) [i(s.f;z)-1Y(§,§z)]exp(-pf;z)=fg exp (- p5)§ (s)s T ds
£

. 3 -
< @(9(8))_(i | exp (- ps)s~lds|
£

The last integral also appears in (4.52, and was bounded in (4.54),

by
(4.60) S(p8)  exp (- p¢) = o(e6 exp (- e ) -
Therefo e,
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<=1
(4-61)  [i(6,8,) - JV(&,8 M exp (=58 ;) = 6lg) € 6 exp(-£E) -

Again subtract (2.12) from itself, and a2pply (4.€1l) to the result.

[, s) - (€, s)] exp (- £5)

[, 8, - 1Y lexp (- ¢8 ) - [i(s,8,) ~37(5.8 Mlex(- 68 ;)

)
L

(4.62)

1 1

6(g) €6 exp(-Ft) + 6(g) €& " exp (- ps)

But equation (3.19) is required to hold only fer —12-17 sargf <args s«

(Figure 3.1 c); there, exp(-ps) < exp(-pt). Thus, (4.62) reduces to

(4.63) [i€, s) - 1V, s)] exp (- ps) = 6(a) € 8 exp(- £t )

which is equation (3.19).

4.9. 1In Section 6, where connections are made for ¢ on the real
line, we will need a bound on  j(%,s) for £ and s real, with the

same sign. Since ¢(s) is holomorphic and ¢(s) = @(s-l) as |s|-0,

for all s not on the negative imaginary axis, the bound do(s)/ds

= s(s"z) holds forreal s - Q0. Therefore we can integrate (2.12)

by parts:

-62-
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- 1 - & 1 £
g, sie” P e ot e P + o lfe Pt o' tyat

1]

If §=lel,lsl <3

(4.65)

-
s(et™ I

i+l

JE, )= 6(£8, )

S

-1 8 3
o(et™) |+ &e) [ t7%a
s

then this implies that

1
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5. Completion of Close Connection.

5.1. We shall compute <(Z) when q(z) = zwlog;z (. -~ -D
near z = 0 to show that assumption (A) of Section 3 holds for
such q(z). In this subsection, we use the notation log;'z = (log =) .

and asymptotic relations hold as z -~ 0; i.e., £ - 0.

1

2"~ iog" 2 (v +u log” " 2)

]

(5.1) q'(2)

L}

2 gz v+ wlogl 2y = 27 g(z)(v + o(D)) .

Substitute this into the definition (2.7) of «(%).

-1

(5.2) = % z q‘l(v + R 1og'1 z)

<
n
=
o]
]

1 -1 )

$(zq) (v+o(l) .

To compire this with assumption (A) we must write zq in terms
of € . Integrate the definition (2.3) of £ by parts and use

(5.1),

(5.3) 3

2
Zq-_f; q'zdz=

- z
zq-vé - 6(log lZ)fo lq(z')dz'|

| e e s
.




P—

To see that the last integral in (5.3) is of the same order as &'

set z=rexp (la) with 0<r< ! andwrite [§] as:

i

r r
(5.4) 3 \j(; s”(log s + o) ds = ',fo s’ log s ds|

_ r
+®(loglr)f | s¥ log" s ds!
0

-1 T v oah
(1 + 6(log r))f ls” logh s dsl

o

Z
=<1+s<1og'1r>>{) lq(z') dz'| .

Therefo'e, (5.3) says that

(5.5) zq= E(l+v+6(loglz))=El+v+o(l)) .

Now (5.2) and (5.5) imply assumtion (A):

(5.6) o= >(l+ vy el 4 @(mg“l z))

=

-1

=%(l+v) ve b1+ oqy .

With (5.5) and the definition of g(z), this also gives us g():

logt + o(l)=logz+logg=(l+v+ 0o(l))logz

1 S

(5.7) g(6)=®(log-1 z)= 6 (log &)= 6(log™t 5) ,

-y - —r

?




5.2. We need the comection formulae for Al

that is, for
(5.8) q(z) = 2" (v>-1),
we must obtain the equations

@ A = a¥(s)+oq
(5.9) () AY(-)=AaY (-8) + o(])

(c) AY ()= AY(-1) - BY (1) 21 sin (Y=) + o(})
where
(5.10) Y=-§- v(v+l)—1 (~ro< ¥ < -é-)

then (5.8) holds, the solution w(z) to (2.1) is
explicitly, in terms of the Hankel functicns H{l) and H{Z) '
A N

(5.11) w=C ¢ H)El) (£/e) + C, & H{Z) (E/¢€)
where :1 and C2 are arbitrary constants and

1 -1
(5.12) A=z val) = Loy

t
!

:ﬁ |
4 -66~
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The connection formulae will follow from (5.11), (2.2) and the
appropriate formulae for the Hankel functions. It is known ([Olver,
1974, pp. 238-239} that

1/2 .-1/2

(5.13) (a) H)f”(g/s)~Als g

for -mT+@y=argf=n, as |t/e]| 2 (§/e)=w

exp (it /¢)

b B (e~ a, et/

for -mEargf =T -6, as [&/el 2 (5/8)~ =

@ B (e/e) = B (¢ exp (~71)/e) exp (i) +

+ H;Z) (§ exp (~71)/e) 2 cos (A7)
with

(5.14) 1-\1=(2/TT)1/2 exp(-%-in()\+13))

a=@/m % exp (bin (x4 L))

We can substitute (5.13) (a) and (b) into (5.11), and this can

be compared with (2.2) because

(5.15) q-l/z = (constant) gx-l/z

by (5.8), and (5.9) (a) follows .

-57-




Equation (5.13) (b) does not cover the negative real numbers
which (5.9) (b) and (c) need, but we can extend it by using

(5.13) (o).

(

(5.16) HXZ)(E_./E)~21A2 61/2

g'l/z cos (AT) exp (1£/€) +

s1a e /% 7% exp (i) exp (-i8 /e)

Now equation (5.9) (b) follows from (5.1¢), (5.13) (a) and (5.11) .
For the last part of (5.9) we combine (5.16), (5.13), and (5.11)
once mcre.

1/2
A(l) = CiA e /

172

(5.17) A(-1) CIAIE + C2 ZiAz el/z cos (\T)

il

B(-1) Czil-\1 el/z exp (\Ti)

Therefore, by (5.17), (5.14), and (5.12),

AW = A(-D) - G, 214, €72 cos (A1)
= A(=1) - B(-1) (A 51/2 exp (A1) 2A, 61/2 Cos (\T)
= A(-1) - B(-1) 21 cos (A7)
= A(~1) - B(-1) 21 sin (YT)
-68-
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5.3. TIn Section 3.2, we had claimed that the method there used
could be carried out nore precisely to compute A(°) instead of
just bounding it. To do that, take fd = 5. and % ©oarg -

el = 3 (Figure 3.1 (d)) and define

g .
Isa(“=.é a(s)j(t,s)exp (pk - ps)@(s) ds
2

In Section 3.2, we had shown that

2
(5.18) ITall = 6(e/8).
With
(5.19) 3j(8)=2a(8)-a, exp(pf - PE,) -

equation (3.7) may be written as

(5.20) a1(§)= Bil(é.éz)exp(pf;- p§Z)+IEa(§)

To use (5.18) to contract (5.20), we need Igal(i) and, in tum,

Iexp(of). By (3.4,
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3
I_exp (p&)= [ exp (ps)i(§,s)exp (pg-ps)ds=
4

3
= s(pg)'lfg lexp (ps) o(s) ds| .
2

By (A), o(s)=6(81). Therefore,

K-
(5.21) I_exp(pt)=6(5p8)" [ lexp(ps) ds|
© 3

£
Set s= 6 exp(i(7-8)) (Figure 5.1) and use the fact that
sin ¢ > l v for Vel - l * to compute
2 -2
(Ln -arg £)
2

.i_exp (pf)= 6(es ) f exp (-zae"l sin 6) do
& 0

(5.22) T

<®(56_1)f exp (-cSz:_1 8) de=®(s/6)2
0

N

Therefore, if we apply Ie to (5.19) we will get

(5.23) I a(6)=1_aj(E)+2, exp(-ps,)) I exp (pt)

_ 2
=1_3,(£)+6(s/6)

If we suosstitute this, (5.18), and (3.4) into (5.20), we get a

bound on al("),
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(5.24) a)(§)=6(c/6)+ [G(s»:/’&)2 +1.8)(8)]

=6(e/8)+6(c/5) Hal :!i
Therefore,
(5.25) al(§)= 6(e/96)

This holds uniformly for £ in the left quarter-circle

%-TT < arg £ =7 (Figure 3.1 (b)) . Now substitute (5.25) back

into (5.20), using (5.18) again.
2
(5.26) al(§)=BzJ(é.&z)eXP(p§°P€£)+@(€/5) .

4

If we require -;la-n‘ =argg =T -90 (Figure 3.1 (d)), then we can

use equation (3.3) for j(g,gz).

(5.27)  aj(€) = B,(Y+o(l)) [(p§ )™ exp (o€~ p€,) - (p€)™ =

-2miexp (pt)] + 6(e/8)° .
But for lz-n =argf =7 - 8y »
2
exp (p€) = 6(e/8)° ,

so the sacond term in the brackets dominates and we are left with
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(5.28) aj(£)= -8, (Y4 o(l) (p8)" .

Moreover, the first term in (5.19) dominates for exactly the same

reason. This gives us the equation we had sought:

(5.29) a(g)

]

-B,(Y+ o()) (p8)”  as €=~ 0
uniformly for lzﬂsarg55ﬂ-eo. ¢ =6 (Figure 3.1 (d)) .
in terms of the original moculaticn coefficient A(§), (5.25) and

(5.29) say that

(5.30) A(§)-A;=6 (£87)) exp (-p8) =

= 6(p&) " exp (- pé)

uniformly for £ in the upper-left quarter-circle, |&| =6, ;

%TT =arg £ = (Figure 3.1 (¢)) . Moreover,
(5.31) A(5) = =B, (Y+O(1)) (p§)"" exp (- pt)

uniformly for £ in part of the same quarter~circle, the arc

l&] = &, é—n’ <argf =7 -0, (Figure3.l (d)).

0
Since. exp (~pf) increases as Im (§) increases, this says that

A(¢) increases in magnitude as £ moves from gl around to

£ =16, the halfway point between §, and gr (Figure 3.1 (¢)) .

£

-73- ‘ ’

b s TRl o o

\ 44




For £ bounded away from gz by a fixed angle, A(§) increases

almost exponentially in (6/c) as e—=0 and, hence, (8/c)—~= .

However, our choice of &= §(g) may typically have
(6/€) ~ log|log €| , so this "exponential" increase in A(f) may
actually be rather slow because £ approaches zero so fast.

For § very near to éz, equation (5.31) does not apply, but

we can use (5.30). If ¢ stay near enoughto ¢§ for example,

K
if the angle between ¢ and gz be no more than (eg/6), then the
right-hand side of (5.30) i{s small, so that A(f£) is approximately

equal to Az .
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6. Connection from Near Zero to Far Away.

6.1. We have obtained formulae comecting the modulation

coefficients A(Z) and B(%) at 2=, =-5 to those at

£=4 =4 But §=3() >0 as ¢ >0, =andwe might really

want to comnect points which are much farther from zero, e.g.,
1

:’,=EL=—1 and ¢ =7, =41 or even E=EL=—1065

R and

£=ifp= exp(e_l).

The obvious approach to comnecting the coefficients at L
to those at R is to comnect g, to & along the negative real
axis, £, to £, by the methods of Sections 2 through 6, and then
£, to fp along the positive real axis. The WKB solution, A(%) -
constant, B(") - constant, is well known to be valid along the
negative real axis and along the positive real axis (subject to some
integrability and boundedness conditions at + =) so long as ¢ is
bounded away from the possible singular point £ = 0. This is good
enough to comect from points like & = exp(e-l) to fixed points

R

This raises the question, how close to zero is the WKB solution

like ¢, =1, bur we still need to push on to & = 8(e).

really valid? If we could extend it, for real mmbers, close enough
to zero, then ZL and ‘(‘R would be comected to é;l and gr, and
the problem would be solved. We shall now show how to carry out
such an extension in most cases.

One approach is to imitate the method of Langer (1931).

Although he studied only the case where q(z) ~ z° at zero, and

-75-

| ——
. v s




obtained an asymptotic formula good at z = 0, his method can also
be applied to the general case to get a weaker result. For q(z)

as was described in Section 2, and for real - in R., it vields

6.1) A=A (-1)] = 6(c)sup{] (d6/d2)-282]:]¢c]>a(s)
{B(£)-B(-1)| = 6(c)sup{| (do/dz)-25%]:[g!> (c)}
uniformly fcr g < - afe)

6.2) AQ)-A(D)]
|B(g)-B(1)]

() supl| (dp/ag)-2:°1:

sle)sup{| (@e/dg)-2:2]: ]2 > () }

uniformly for ¢ > A (eg)
Thus, Langer's method can extend the WKB solution to a distance
A(e) from zero, with A(e) >~ 0 as e - 0, vprovided that the
right-hand sides of (6.1), (6.2) approach zero as e - 0.
How useful is this? Suppose that assumption (A) of Section 3
holds in addition to the assumptions of Section 2. Then because
o= G(g-l) and ¢ 1is holomorphic, (d¢/dg) = G(E-z) on this real

line; therefore,

(6.3) (d¢/dg) - 2¢2 = @(5-2) as |&| +0, uniformly.

Thus the condition for this extension method to work is
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(6.4)

e Ale) <+ 0 as ¢ -+ 0.

. . . 1 -
This allows us to take 4i(g) = ¢ with a< 5 Zor exanm

But such

,l(f)

will not be good enough; we must extend the

1

'

WKB solution still closer to zero. As noted in Section 3.3, 1 tmical

interesting *(:) would have 3&/¢c = %— logllog <|; while if

A() = =Y then = (28) '(logllog s1)™™ »» =,

6.2. To comnect from < =-1 to *. and o =1 w

‘e

will again use the integral equation (2.13). Besides the assumtions

of Section 2, we will use a weaker form of assumtion (&), Section 3

(a")

3 (&)

= G(E-l) as |g| - 0, uniformly.

Since ¢ is holomorphic, it follows that for real ¢ ,

(6.5)

¢' ()

2

=6 ) as |g| » 0.

We shall start by connecting between $5,() and £

where ¢ £8§; 2 8,0 and

6.6) ¢ 6.

1
1

(log (s 281

l))2+0 as e = 0

2

(),

Equation (6.6) keeps 51 and §, from being too far a-

part for us to control integrals ranging between 61

and 52.
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Write equation (2.13) and its egquivalent for posi-

tive ¢, egquation (3.5), as follows:

A

6.7) Ag) - A; =By j(g,gl)exp(-psl) + TEA(:',)
where
g
(6.8) TEA(s) = S ¢(s) A(s) j(z,s)ds
1
and where
(6.9) A =Alg), By =Blg)) , g = Ly
When §1 =+ 68, 1 we take §1 2828 55
when £ == &y then - §5 26 5 &y -

We can bound Te by means of (A'), (6.5), and (4.65). Let

|- 1], represent the sup norm on the interval over which ¢ ranges.

|A

IAl_ 5L Hesi. 7 |s~las|

I'reA(e)I
&

(6.10)

|A

Al 8(e/8)) log(s,/6;) = I all o
Therefore TE is a contraction for sufficiently small
e, and (6.7) has a bounded solution. Substitute (6.10)

and (4.65) into (6.7)

. -1
(6.11) Alg) - A, = Gle/s,) + I all, 6(es, Log(6,/5,))
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«d

N

Therefore || A|| is bounded independently of ¢, and hence,
@

A, + G(eﬁ-l

(6.12)  A(g) 1 1

4

log(éz/sl)) = A, ¥ o (1)

uni formly for I between gl = * 3 and & 3

1 2°
To compute the other modulation coefficient, B(Z), 1integrate
equation (2.8) by parts and use eguations (A'), (6.12), (6.5), and

(6.6) and the fact that the integral is computed on a real interval.

£
(6.13)  B(g) - By = f s(s)A(s)ef® as =
&1
- £ - £
= Al P 1 e ¢ (s) - Al o 1 f¢'(s)eps ds +
El €1

£
+ I $(s)(Aa(s) - Al>e°5

ds
51
E 2
= @(s/sl) + @lg) /f s "ds +
&1
+ 6es Y 1096, /6.) fE s~ g
€91 glog /9y S

&1

Sle/s)) + ®e/s,) + 6(es7h) (log(s,/6,)) 7

o(l)

|

b PNl ol v : — o




Th.s, o LA : AT T
; Bly) =1 ~ 2(l)
Ty e g Y [ oy S -
. Jal T04A. 15 L0 DIOVEe TOAl
Alxd) = A(21}y + o(l)
B(23) = 8(:1) + o(1) .
We cannct use eguations .12y and (6.14) directly bera.s-
in Section 6.2, et must e too close to cach ot

In the case gfz) = z’(log z) , We typicallv will chncs-

log log 2, . Suppose that we tried to use

012 and 1614 py wotting i,{e) = S(z) , ‘32(6) = 1.

Then we would find that
« 1 2 - , L .

L0 25T log® (5,570 = 2(logilog 5)) 7T log’s -

Yo, rondition (6.6) would be violated.

rn

Instead, we will choose a

(a4

ilnlte sequence
Sle) = 5, (0) < N I - P O

for whict, for L =1,2,...,n-1 ,

"
+
(@]

log™ (3 S as

.12y and (6.14) o apply, so that our anal,

"T'i’"“ﬂt(’]'/.

iy, we begin with an example. Let




.19, 5 5 =5 log, log 3

Define 51, $o0 5 54 as follows:

(a) 5§, % 3

(b) §, = ¢ exp(log(z)(_-l))l/4
(h.20)

(@ 55 =< log> (1)

() 54 = 1

Here we zre using the notation

logzx = (log x)2 ; log(z)x = log log x

or, mora generally,
log(n+l)x = log log(n)x
(6.21)

n+l

log X {log x)(lognx)

It is obvious that sl,...,a defined by (6.20) sat-

4
isfy (6.17). To see that they satisfy (6.18) we startc v
putting & more explicitly on the right side of (6,19).

Divide (6.19) by ¢ and apply log.

loge-l= logé-l + log % + 109(3)6-1 = (l<l-o(l))logs_l
6.22) 1og® ™ = 0(1) + 10g¥ 57! = (140 (1)) 1ogs t

-1 1 - -

e =3 109?57 = @+ o)) 10 TH




Now substitute 6,27 - : s L
ee]’ 106° (5,510 = 2o i) (og DTN fegeThy) - logl TR % |
= o)) tes@hH T (@ h A |
e - 1512
= o) o3P H T {egP L hH AR <
= o) gPhTH2 Lo as - 0

Thus (6.18) holds for 3 and iy

Next substitute (6.20 (bj, (c)) into (A.18)

- - - hi - |
sdzllogzls3521) = exp[—(log(z)s l)‘/4} {logle 153)—loq(e ‘52)12
-1.1 ( - -1
s e og D THY 3 106 H-10g@W T
= (3r0(1) expl-{log@ TH 4 10g@ 7L o
as ¢ » 0
Thus (6.19) helds for 3, and 63.
Last, substitute (6.20 (=), (d)) into (6.18).
edgllogz (&54531) = log—3(s_l) (log a—l - 3 log (2)8‘114
= Q+0()) log ¥t e 0 as e~ 0

Thus conditions (6.17) and (6.18) hold in their entirety

so that (6.15) holds for this example of primary interest.




£.4. We now give another exarplco, one or which wao

cannot prove (6.15), It indicates that we need

assumption in order to wrove (6.15)
form that assumption should take--a
assumption (A).

We shall construct a function
infinity as § - 0
(n) -1

3

log . t 1s conceivable that

new

oY)

, and it suoogests what

slight s<renthenin~t of

£(3) which grows to

more slowly than any iterated logarithm

-~

some f(3) = 3 (v +

+ o(l)) satisfvirng (i) might have an errcr term so largs

-1

that, to satisfy (3.21), we must have = § < fl{i§) or

[¥]

f(¢). W2 shall show that, for su

P
o

a case, the method of

subsection 6.3 will not work, so we cannot prove (6.13) for

&

First, we construct £(g).

- 1
fl(é) = log §
£,(8)

(€£.23) £ (s8) =

N+1

log fN(a

For any given e (0,1),

is a finite N = N{(¢&) for which

o1 (8) > £416) = £, (6)

Therefore we may define a limiting

Figure 6.1.

For N = 1,2,3,... define
1 €
1z fN(é) < N
) if fN(s) > N

log fN(s) < EN(S) , SO there

function, shown in




— e —

PITTAL

(:“

: {w(s)




(6.20)  £,(5) = lim £.0) = £y ;) (8) = log N (8)) -1
N+ ¢

Note that N{§) increases to infinity as § - 0, and that

by (6.23), fw(é) < N(8). Equation (6.23) also gives a

lower bound to £_ , for if N = N(§) then £y = log fV-l '
so that fN—l > N-1. Therefore, fy > log(N-1). 1In
summary,

(6.25) log(N(s) = 1) < £ _(8) < N(s) .

We make f_ = monotonic by defining
(€£.26) £(5) = sup { fm(é‘) t 5 <8 <1}

Because f@(d) + o as ¢é =+ 0, the same holds true for

£(5). How fast does £(§) grow? Let § < 6' < 1. Then

by (6.25),

(6.27) £(3') < N(6') < N(§) < 1 + exp £_(6) =
=1+ log®G) - 1) ;-1

Therefcre

(6.28) £(s) < 1 + log N()-1) ;-1

For any fixed N, (6.28) and the fact that N{§) = » dimply

that




...
N

L &1

o
+
o

(6.29) £{8) << 1log T as

With this very slowly growing £(3i), we define : ()

first define = (3) by

(6.30) Tl = £

and then invert to get 3 (eg) (defined for all small = ex-
cept for the jump discontinuities at s—le =1/f =1,

1

S 1/3, ...). This 3§ (e) is extremely close to &, but
it still satisfies (2.14); that is, ¢ << § << 1.

There is now so much distance between ! (e) and 1l that
we can't connect across that distance, using the method
of subsection 6.3. Suppose that we try to do so, i.e.,
that we construct a sequence like (6.17) and (6.18) and
try to use it to make a connection. We shall show that
our task would never end; that however large N may be,
GN(e) < <1 as e -~ 0.

Specifically, we take a sequence Gl, $54 63,...
which satisfy (6.17) and (6.18) or even a weakened form

of (6.18), that is,

(6.31) sle) =5 () = s,(e) <6 (e) < ...
(6.32) st 1og(s 571 .0 as e + 0

. € % EALEWS B € .
) .- .




) | N
A

e =

——

- -t PR e < % - -
Then we 3nhall show 2y lnduction that o

equations hcld, for all i:

A.33 &, » 0 as e » 0
1
- N) -
H.34) = 15; << log( )Sil as ¢~+0,
rY

Zquation (A.23) 1s the result we want;

for

rt

each

(A.34)

sary lntermediate step in the induction;

can't get vary far Irom e

it says that i,

Egaations (6.29) and (6.30) take care of

i =1. If (£.32) and (4f.34) hold Zor scme 1,

o(éis-l)

1]

(6.35) log(é:zl 5..)

Exponentiats this egquation to get:

. . -1
(6.36) §i41 ¢ di exp(si; )

fixed

N.

1s a neces-—

the case

of
oy
1]
o]
o
v

By (6.33) and (6.34) with N = 2 :this im»olies that

@57l < s,

<8 exp (log i i

i+l

Now that we've shown (6.33) for (i+l), eguation

remains.

log

6_1
i

(6.34)

1




Choose any integer M > 1, and regulire =

small that

log(M+3) Sfl > 1
1
By (6.26) and (A.34; with (M+2) and (M+3) in
N,
_l~ l -
(6.38) T 8541 < T8y exp (e ol) <
< (log(M+2)afl) exp (log M*+3)5-1) o
= (log(M+2)5fl )2 < log'M+l)Sfl
i i
By (6.35) and (6.34) with N = 1.
(6.39) log 5. .= log 5-1 + of($ s-l) =
' 90341 i i
apply log™™ 1) o equation (6.39)
(6.40) log™sTl = (1 +oiog®™sTl s 3
> log(M+l) 5"'1
Combining (6.38) and (6.40)
, (6.41) c-l 6;41 <% log(M) 6211
t
, -
- - - - ——— —- - -

(8}
(0]
tr
t]

(1+o (1)) log

log

(M)

u
(@]

N
o

1

°i

gives the result we had sought:




6.5. Subsection 6.4 indlcates that we will rnot b«

able to solve the connection problem fully 125 () b

extraordinarily close to =. To give rocm for ‘(:)/:

p—

to grow at a reasonable rate, we must have some contro
over the error term in assumption (A). So we strengthen
(A), reguiring the error term to approach zero at least

as fast as some iterated logarithm:

A" 58 =5t + eog™ g THTY
uniformly in ¢, as |z| - 0, where

n 1is a fixed positive integer and

_Q<Y<—‘

2

This assumption still covers practically all familiar ex-

amples; when g(z) = z"log"z we may take n = 1 ia (a").
Provided that (A") holds, we can define ‘(z) by:
(6.42) § = ¢ 1°g(n+2) s-l

Then for n > 1,

(6.43) log § {1 + o(1) loc ¢

It is easy to see that this satisfies (2.14). It also

. satisfies all the other regquirements that we have put on

§(e) 1in earlier sections, for by (A"), (6.43) and (6.42)




i

(n) (n) -1

sllog™: 5"t = gog® Tl

[}

(6.44) g(s)

(a+l) =1)=2 _ (exp(-23/¢)).

o (log

We will solve the connection problem by finding
S0 Sy0ee satisfying (6.17) and (6.18). The choics
of 8§ will be essentially the same as in the example

in 6.3. Set 51 = 3(¢g). For i =1,...,n+l, set

(a) S, = e exp(log(n+3-i):-l)l/4

(6.45)

)

() 62n+4 =1

We need only verify that (6.18) holds. For the first

step, take i = 1.

-1
1

1,2

-1 2 -1 -1 .-
(6.46) Lél log (625 ) = €dy [lug(;el )+-loq(cza )1

(n+3) -1

-1 [-;og(n+3)s—l +

= (log )

(n+2) --1,1/4 .2
e )

+ (log ]

g(n+2)!:-l)-l/2 -~ 0

(1+o (1)) (lo




By almost the same reasoning, we can verify (6,19

for all odd ij' except 3 = 2n+3:

L-1 2. ;L
T6.47) gdai,y 109 Baadaier)

{(n+2-1) -1,-3 (n+3-i)€—l

= (log ) [-3 log +
+ (log(n+2-i)€-l)l/4]2
= (1+o(1)) (togP*¥ ¥ ~4)=3/2
Next we cake care of (6.18) for even 5j:
(6.42) €35} log? (5,,,135;) = expl-(log 378 ~h /g
et = (Qog@*ID) mLI1/A L g (a3-i) -1)2
= ((3 + O(l))x]2 exp("xl/4) - 0
where & = lo<;(n+3'i)g;-l > @
The last step 1is éj = 52n+3 ;, L.a., 1 = n+l.

c671, . log? Ly = =13 3 e -1.2
°62n+3 09 (62n+462n+3) = (loge ) (-loge~-3 log“'e 7]

= (1+o(1)) (log e H™r 4 o .
Therefore, (6.18) holds, so (6.15) holds and the connec-

tion is complete.

-y - e - o ———— —— = -
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ABSTRACT (continued)

of turning points, which includes logarithmic branch points of g(z), among many
others. To this end, a delicate contraction for an integral equation differing
from those of Langer and Olver is used to show that Bessel functions can still
approximate the solutions at a certain, small distance from the irregular point
of (1.1), even though not uniformly near it. A novel feature of the analysis is
that the extreme variation of the exponential kernel is here controlled even on

non-progressive paths. Connection is completed radially by means of the same
integral equation.
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